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Abstract 

By a known case of the Jacobian conjecture, we give a simple elementary proof of the two 
dimensional complementary conjecture. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In [7], Moh, McKay and Wang proved the following. 

Theorem 1. Let pII( plz(t), pz,(t), pIz(t) be polynomials with zero constant terms 

and let A(X, Y),B(X, Y)E k[X, Y] (k is a field of characteristic zero) be irreducible 

polynomials such that 

4Pll(f), pdt)) = 0, B(Pll(t), Pldt)) = t, 

A(Pzl(t), Pdt)) = t, B(p21(t), p22(t)) = 0. 

Then k[A(X, Y),B(X, Y)] = k[X, Y]. Namely, (A(X, Y),B(X, Y)) is a polynomial auto- 
morphism. 

This theorem was called ‘two variable face polynomials conjecture’, or ‘two dimen- 

sional complementary conjecture’ in [9]. In fact in [9] the conjecture was formulated 
for arbitrary n. For n > 2, to our best knowledge, the conjecture is still open. 
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The proof of Theorem 1 in [7] uses notions of the characteristic data of two polyno- 

mials and approximate roots of a polynomial introduced in [ 1,2], as well as the proof 

of the famous Abhyankar-Moh Theorem (the theorem of embeddings of the line in 

the plane) in [3], which is very complicated. 

In this note, we present an alternative proof for Theorem 1, by a known case of the 

Jacobian conjecture. The proof in this paper is much simpler than that in [7]. We feel 

that this proof gives some new insight of the problem, hence it is worthwhile to record 

the proof here, in the hope that the ideas used here will be useful for attacking the 

two-dimensional Jacobian conjecture and the n-dimensional complementary conjecture 

in the future. 

2. Preliminaries 

Lemma 2. Let k be a field of characteristic zero and let F = (Fl, Fz)~(k[& Y])* 

be such that det(J(F))Ek* and the Newton polygon of Fl(Gl(X, Y),Gz(X, Y)) is 
a triangle or a line segment for all two dimensional polynomial automorphisms 
G = (Gl, G2) E (k[X, Y])*. Then F is an automorphism. 

Lemma 2 was first proved in [4, Theorem 19.4, p. 1431 by very simple and elmentary 

methods, as a trivial case of the Jacobian conjecture which says FE (k[Xl,. . . ,X,,]) 

(k is a field of characteristic zero) is an automorphism if det(J(F)) E k*. To our best 

knowledge, the conjecture is still open for ~12 2 (the case n = 1 is trivially true). For 

a history and related topics on the Jacobian conjecture, see [5]. 

Recall that for f(t),g(t)E k[t] with f(t) y$ k, (k is a field), the minimal polynomial 

of f(t) and g(t) over k is the unique (up to a factor in k*) irreducible polynomial 

M(X, Y)EK[X, Y] determined by f(t) and g(t). The minimal polynomial M(X, Y) of 

f(t) and g(t) over k has the following very important property: if L(X, Y)E k[X, Y] 
with L(f(t), g(t)) = 0, then M(X, Y) 1 L(X, Y) in k[X, Y]. 

Lemma 3. Let f(t),g(t)E k[t] (k is a field) with k[f,g] = k[t] and let M(X, Y)E 
k[X, Y] be the minimal polynomial off(t) and g(t) over k. Then 

f’(t) g’(t) 
k&(f (t), g(t)) = - Mx(f (tX g(t)) E k* 

Proof. It is a direct consequence of [6, Proposition 1.11. 0 

Recall that for any polynomial P(X, Y)E k[X, Y] (k is a field), its Newton polygon 

is defined as the convex hull of (0,O) in union with the lattice points (i,j) for which 

X’ Yj appears in P(X, Y) with a non-zero coefficient. 

Lemma 4. Let k be a fieZd and let f(t), g(t) Ek[t] such that f(t) @k and let M(X, Y) 
be the minimal polynomial off(t) and g(t) (that is, M is an irreducible polynomial 
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in k[X, Y] and M(f(t), g(t)) = 0). Then the Newton polygon of M(X, Y) is a triangle 

or a line segment. 

Proof. By [S, Theorem 1, p. 2461, Req(f(t) -X,g(t) - Y)=cM(X, Y)q where c~k* 

and q is a positive integer. By [8, Corollary 6, p. 2501, the Newton polygon of 

Rest(f(t) - X,g(t) - Y) is a triangle or line segment, so is that of M(X, Y). 

3. Proof of Theorem 1 

By hypothesis, A(X, Y) is the minimal polynomial of ptt(t) and pt~(t) over k, 

B(X, Y) is the minimal polynomial of pzt(t) and p&t) over k. Since A(pzt(t), pzz(t)) 

= t, we have 

P;lw4X(P2l(~)~ P22(l)) + P;2wMP2lw, p22Ct)) = 1. 

By Lemma 3, 

Hence 

det(JM~))(m(t), pdt)) = el Ek*. 

Similarly, 

d=%WW)(pll(t), pdt)) = e2 Ek*. 

Substituting t = 0, we get et = e2 = (det(J(A,B))(O,O)) := e. Since B(X, Y) is the min- 

imal polynomial of pzt(t) and pzz(t), we get B(X, Y) 1 det(J(A,B)) - e. Similarly, 

A(X, Y) 1 det(J(A,B)) - e. By the hypothesis of Theorem 1, A(X, Y) and B(X, Y) are 

relatively prime in k[X, Y]. Hence 

A(X, Y)B(X, Y) ) det(J(A,B)) - e. 

If det(J(A,B)) - e # 0, then deg(AB) I deg(det(J(A,B)) (here deg denotes the total 

degree with respect to both X and Y). But obviously we have 

deg(AB) = deg(A) + deg(B) > deg(A) + deg(B) - 2 2 deg(J(A,B)). 

This contradiction shows that det(J(A, B)) - e = 0. Therefore det(J(A, B)) = e E k*. 

Given any two dimensional polynomial automorphism G =(Gt , G2) with G-’ = H= 

(Hl,Hz). Since A(X, Y) is the minimal polynomial of pll(t) and ptz(t), it is easy to 

see that A(Gt(X, Y), G,(X, Y)) is the minimal polynomial of H~(pll(t), ply) and 

H~(ptt(t), ptz(t)). By Lemma 4, the Newton polygon of A(Gt(X, Y), G2(X, Y)) is a 

triangle or a line segment. By Lemma 2, (A,B) is an automorphism of k[X, Y]. 
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